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The kinetics of surface craze growth in 
polycarbonate exposed to normal heptane 
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A variable radius of curvature strain-bending apparatus has been used to investigate the 
propagation of surface crazes in polycarbonate exposed to n-heptane. It was found that 
for crazes growing in a zone free of other crazes, the growth rate was linear at constant 
temperature and exponentially dependent upon temperature. An activated-state theory 
was developed to describe the kinetics of growth in terms of two parameters, B - l ,  a 
characteristic strain constant that was independent of test variables, and A ' ,a charac- 
teristic growth-rate parameter that varied exponential ly wi th temperature. A s t ra in-  
temperature equivalence principle was adopted to predict the crazing behaviour over a 
range of temperatures and strains. A critical strain was defined in terms of a maximum 
allowable craze growth rate. 

1. Introduction 
Almost all linear thermoplatic polymers are sus- 
ceptible to environmental stress-cracking when 
exposed to a combination of stress and organic 
liquids. Under certain conditions, crazes will 
nucleate and grow at a stress well below that 
necessary to cause homogeneous shear yielding, 
and are thus the precursors of crack propagation 
and failure. Since crazing can also be a source of 
toughness in glassy polymers, the phenomenon is 
the subject of a large number of published studies. 
Research has been concentrated on the micro- 
scopic structure of crazes, the influence of stress 
and the effects of environment on the nucleation 
and growth of crazes, and the effects of crazing 
on the macroscopic properties of these materials. 
Review articles by Rabinowitz and Beardmore 
[1] and by Kambour [2] provide information 
on the present state of knowledge. The various 
methods of  studying crazing are reviewed by 
Brown in a more recent article [3]. The criteria 
for craze initiation and growth have been defined 
by a number of  investigators; among the most 
widely referenced are the theories of  Sternstein 
and co-workers [4, 5], Oxborough and Bowden 

[6], Matsushige [7], Marshall, Culver and Williams 
[9], Andrews et  al. [9, 10] and Argon et  al. [11 ]. 
It is generally agreed that there is either a critical 
stress or a critical strain below which crazing does 
not occur, at least within the time-frame of the 
usual laboratory experiments. The techniques of 
fracture mechanics have been used to study the 
kinetics of  craze growth from a sharp notch [ 8 -  
10, 12], and growth rates have been correlated to 
the stress intensity factor at the edge of the notch. 
It is also clear that the temperature and stress 
dependence of the rate of  nucleation and the rate 
of  craze growth can be represented by the rate 
equations of  activated state theories [13-15] .  
Furthermore, the rate processes are strongly 
dependent upon the contacting liquid. 

Crazes are usually initiated at the surface of 
a polymer at points of stress concentration, such 
as notches, voids, embedded second phases, holes 
and scratches. Internal crazes can also be generated 
when internal stress concentrations are sufficiently 
high, as is the case for rubber-particle modified 
glassy thermoplastics. Crazing occurs in inert 
atmospheres, but occurs more readily when the 
material is in contact with certain solvent liquids. 
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In models for predicting the initiation and growth 
of  crazes, it is assumed that a liquid or gaseous 
agent is adsorbed on the surface of  the material, 
and is preferentially adsorbed at points o f  stress 
concentration. The effect of  plasticization under 
stress is to induce localized yielding phenomena 
that lead to the elastic-plastic expansion of  voids 
[10],  the repeated nucleation of  pores [8, 10],  or 
to unstable material-flow processes that cause the 
polymer surface to break up into the intercon- 
nected pore network characteristic o f  craze 
matter [ 11 ]. 

Since glassy thermoplastics are widely used in 
applications where the materials are exposed to 
both stresses and solvent environments, it becomes 
important to define criteria for environmental 
stress cracking. Many authors have attempted to 
define a critical stress or strain for a material 
exposed to a pure liquid or liquid mixture [ 1 6 -  
21] .  Failure is thus minimized by maintaining 
the level of  stress or strain on the material below 
the critical value for a particular liquid environ- 
ment. One o f  the most popular tests for determin- 
ing critical strain (popular because of  the simplicity 
o f  the test), has been to flex the material over an 
elliptical bending form, immerse it in a liquid 
environment for a fixed period of  time, and 
measure the minimum strain at which crazes 
appear on the flexed strip [ 2 1 - 2 3 ] .  In general, 
it is found that critical strain levels can be cor- 
related with the physical properties o f  the polymer 
and liquid, such as solubility parameters, surface 
tension or molecular characteristics [2].  

It is the purpose o f  this work to quantify the 
results that can be obtained from a strain bending 
apparatus, using the rate equations of  a simple 
activated-state theory. Using our own results on 
the propagation of  crazes in polycarbonate exposed 
to normal heptane, and also the results of  Argon 
and Salama [11] for the crazing of  polystyrene in 
air, it will be shown that the development of  crazes 
with time can be predicted from a minimum of  
experimental data. Also, rather than reporting a 
static or "equilibrium" value of  critical strain, we 
will define a "critical strain" at a specified value 
o f  the rate o f  craze growth, which we feel is a 
more meaningful parameter for correlation with 
the lifetime of  a material in service. 

2. Experimental procedure 
Experiments were conducted on a variable radius 
of  curvature strain-bending apparatus, fashioned 

Figure 1 The strain-bending apparatus 

a f te r  that designed by Stolki and Haslett [23]. 
Rectangular test specimens, 250 mm by 50 mm, of  
Lexan polycarbonate, were cut from 4 mm thick 
sheets, and then annealed and dried at 100 ~ C for 
24 h under vacuum. The strain-bending apparatus 
is shown in Fig. 1. A test specimen was flexed over 
the surface of  the apparatus and attached to the 
metal block with a pair of  grips, as shown. The 
strain, e, in the test specimen at any point is given 
by 

e = d / R ,  (1) 

where d is the half-thickness of  the specimen and 
R is the radius of  curvature at the neutral axis of  
the flexed sample. In order to obtain the most 
accurate values o f  strain as a function of  position 
along the surface, a calibration was carried out 
using HBM 3/120 LY58 strain gauges, glued at each 
point of  measurement to a 0.35 mm thick strip 
of  steel mounted in the same manner as a test 
specimen. A millimetric scale was etched on one 
edge of  the apparatus adjacent to the mounting 
surface, and the strain was measured as a function 
of  position along the surface. The calibration 
curve thus obtained is shown in Fig. 2, in terms of  
per cent strain of  the calibrated specimen as a 
function of  position along the curved surface. To 
use the calibration curve, the ordinate must be 
multiplied by the ratio of  the thickness o f  the 
test specimen to the thickness o f  the calibration 
specimen (i.e., 2d/0.35). 

The strain-bending apparatus, with test speci- 
men mounted, is placed in an open glass vessel 
containing the solvent at the temperature of  the 
test. A cover is placed over the top of  the vessel 
to minimize evaporation losses. To maintain a 
constant temperature, the vessel containing the 
apparatus is placed in a thermostatically controlled 
water bath, also of  glass, so that the water nearly 
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Figure 2 Calibrat ion curve for the strain on the surface of  

a test specimen 0.35 mm thick. 

reaches the top of the immersed vessel. The test 
apparatus is positioned in such a manner that the 
crazes forming on the surface of the test specimen 
can be seen and photographed. A typical photo- 
graph is shown in Fig. 3. Crazes appear at one end 
of the specimen surface, having started from the 
cut edges. The craze-front moves up the surface, 
and thus both the movement of the front and the 
growth of crazes can be recorded as a function of 
time. In some tests, the cut edges were coated 
with an epoxy resin to prevent solvent contact, 
thus forcing the crazes to nucleate on the surface, 
away from the edges. The rate of craze growth can 
be determined by measuring the length of an 

Figure 3 The envelope of  crazes on a polycarbonate  speci- 
men exposed to n-heptane. 

individual craze as a function of time, using a 
cathetometer. 

3. Theoretical analysis 
When a polymeric solid is flexed and the surface 
under tension is exposed to a solvent, crazes 
nucleate at the cut edges of  the solid and at other 
sites of stress inhomogeniety, and, subsequently, 
grow to macroscopic dimensions in a direction 
perpendicular to the imposed tensile load. When 
the distance between crazes is sufficient, the 
nucleation and growth of a surface craze is not 
affected by the presence of others. Under such 
conditions, it has been shown that both the 
nucleation rate and the growth rate of the "non- 
interfering" crazes are linear [11, 13] and can be 
represented by one-dimensional models [14]. In 
a previous paper, Nicolais and DiBenedetto [15] 
assumed that the initial nucleation rate and the 
growth rate were activated processes that could 
be represented by Arhennius-type equations. 
Following the lead of Zhurhov et al. 13], they 
used the following rate equations: 

dN (n - -  1)a 
dt - No exp (-- AEn/RT ) sinh a* , (2) 

where dN/dt is the nucleation rate, No is a con- 
stant, AEn is the activation energy for nucleation, 
(a*/n-- 1) is a characteristic stress constant, and 
a is the maximum imposed tensile stress, and 

dG 
dt Go exp (-- AEG/RT ) sinh a/a* (3) 

where dG/dt is the craze growth rate, Go is a con- 
stant, AE e is the activation energy for the one- 
dimensional growth process, and o* is a character- 
istic stress constant. 

When the cut edges of  the test specimen are 
exposed to solvent, it can be observed that nucle- 
ation occurs preferentially (exclusively at low 
enough deformation) from the cut edges. Further- 
more, it is observed that the crazes grow perpen- 
dicular to the direction of the applied stress. It is 
reasonable to assume that the time required from 
an edge, at any given level of strain, is negligible 
compared to the time required for the craze to 
grow to optically visible dimensions. Under these 
conditions, and at constant temperature, Equation 
3 may be integrated to give 

G(t) = Goexp --AEG f s m n - - ~ d t ,  (4) 
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where G(t) is the craze length at time t. In a strain- 
bending apparatus, the deformation is held con- 
stant and the stress relaxes with time. For glassy 
polymers well below their glass transition tempera- 
tures, the relaxation times tend to be long relative 
to the time scale o f  a typical test, and a constant 
average value of  the stress a(t)  ~ (o) = E0 e, may 
be used in the integrand of  Equation 4. Integration 
o f  Equation 4 yields 

G(t) = Go exp ~ sinh \ o* t . (5) 

Measured from the instant of  immersion of  the 
specimen in the solvent, the time required for a 
craze initiated at an edge to reach the mid-point 
of  the specimen is defined as t-. The length of  the 
craze when it reaches the mid-point is G(t) = GM. 
Equation 5 may be rearranged into the following 
form:  

e = (B-1 ) sinh-1 GM = (B -1 ) In A'}- 

+ ~ + 1 , (6) 

where 

A '  = Go exp - ~ -  (7) 

and 

(a -1) = (o*/Eo). (8) 

The quantity A '  has the dimensions of  length 
per unit time, and may be interpreted as a charac- 
teristic growth-rate constant for a given p o l y m e r -  
solvent system. It depends exponentially on tem- 
perature, so that the activation energy for craze 
growth, &Ea,  may be calculated from a plot of  
in A ' against T -1 . 

The quantity B -1 has the dimensions of  strain 
(i.e., is dimensionless), and may be interpreted as 
a characteristic strain constant for a given poly- 
mer, It should be relatively independent of  tem- 
perature, well below the glass transition tempera- 
ture of  the polymer. 

Thus, the time required for a craze to reach 
the mid-point of  a test sample surface (i.e.,)-) for 
different values of  e (i.e., at fixed positions along 
the strain bending apparatus surface), can be 
measured and then Equation 6 can be used to 
evaluate the characteristic constants A '  and B-1 .  
By repeating the experiments at different tempera- 
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Figure 4 A plot of per cent strain against the time necess- 
ary for a craze to reach the centre of the test specimen 
for polycarbonate in n-heptane at 300 K, (Solid Curve) 
and 308 K (Dotted Curve). 

tures, the activation energy for craze growth, 
&E6, can be evaluated. 

4. Experimental results 
The experiments were carried out on Lexan poly- 
carbonate immersed in n-heptane at temperatures 
of  3 0 0 , 3 0 4 , 3 0 8 , 3 1 3  and 318 K. 

A typical set of  experimental values of  7 at 
various levels o f  strain, for a specimen with the cut 
edges exposed to solvents, is illustrated in Fig. 4 
for a temperature of  300 K. The dotted curve is 
a trace of  the data at 308 K, and illustrates the 
strong effect of  temperature on the craze growth 
rate. When (GM/A ') >>-t, and ( 2 G M ) = 5 0 m m ,  
the width of  the test specimen, Equation 6 may be 
rewritten as: 

5O 
e ~ B -1 In ~ -- B -1 in 7. (9) 

A 

A linear regression analysis may be used to 
calculate the values of  the parameters A '  and B. 
The solid line drawn through the data at 300 K is 
the calculated curve, using A ' =  2.8 x 10 -12 
cmmin -1 andB = 2200. 

Another method of  calculating A '  and B at 
constant values o f  both temperature and strain, 
e, is to measure the craze growth as a function of  
time at various points along the test specimen. 
Equation 3 may be rewritten in terms of  A '  and 
B, as: 
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Figure 5 Craze length as a function of  time for polycar- 
bonate in n-heptane. The linear port ion shows non- 
interfering craze growth. The logarithmic port ion shows 
the effect of  craze interaction. 

dG 
- -  = A' sinhB e. (10) 
dt 

Specimens with their cut edges covered, were 
immersed, and the craze growth observed using a 
cathetometer. A typical growth curve is illustrated 
in Fig. 5. Initially, the craze length is a linear 
function of time. It was found that whenever an 
isolated craze was able to grow without inter- 
ference of other crazes, the growth was always 
linear. As a growing craze encountered crazes 
coming from the other direction, or when a new 
craze developed near other crazes (for example, 
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Figure 6 Craze growth rate as a function of per cent 
strain for polycarbonate in n-heptane at 300 K. 
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Figure 7 Craze growth rate as a function of  per cent 
strain for polycarbonate in n-heptane at 318 K. 

see Fig. 3), the growth rate decreased markedly 
and did not follow a linear law. The change from 
linear growth for the specimen used (illustrated 
by Fig. 5) occurred after about 60 min, which was 
the time at which the craze approached the centre 
of the sample and encountered crazes coming from 
the other direction. During the period between 50 
and 80 min, the growth was logarithmic, and quite 
analogous to that found by Wales [24]. The slope 
of the initial portion of the curve can be used to 
determine the growth rate, dG/dt, for the "non- 
interfering" case. 

Values of dG/dt as a function of strain, e, are 
illustrated in Figs 6 and 7, for temperatures 300 
and 318 K, respectively. For the rage of variables 
studied, the minimum value of (Be) was of the 
order of 18, so the hyperbolic sine function is 
well approximated by an exponential and Equa- 
tion 10 may be rewritten as: 

in = l n - -  + Re. (11) 
2 

A linear regression analysis may be used to evalu- 
ate A' and B at each of the temperatures used. 
The solid curves drawn through the data in Figs 
6 and 7 are obtained using the best-fit values of 
A' and R at the respective temperatures. 

A constant value of B = 2200 was used for all 
values of temperature. Using a value ofEo = 2200 
MPa for the modulus of polycarbonate, a value of 
a ~ =  1 MPa for the value of the characteristic 
stress constant for polycarbonate is found. The 
growth rate parameter A' for the polycarbonate- 
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Figure 8 Semi-logarithmic plot o f  the  craze growth rate 
parameter  as a func t ion  o f  T - '  with AE G = 167 000 
J g-mo1-1 for polycarbonate  in n-heptane.  

n-heptane system varied exponentially with tem- 
perature (Equation 7). The results are illustrated 
in Fig. 8, as a semi-logarithmic plot of  A '  as a 
function of  T -1 . From the slope of  this plot, a 
value for the activation energy of/kEG = 167 000 
Joules gram mo1-1 may be calculated. 

Using Equations 5 and 9, with the measured 
values o f  A '  and B, the position of  the craze bound- 
ary (Fig. 3) as a function o f  time can be predicted, 
as shown schematically in Fig. 9. The present 
authors found the calculated craze fronts matched 
the experimental data within the precision of  the 
measurements. 

5. The equivalence of strain and 
temperature 

A master curve for the craze growth rate at a 
reference temperature may be calculated by 
recognizing the equivalence of  strain and tem- 
perature as they affect the growth rate. Equating 
two values of  dG/dt at two temperatures Tand TR, 

t = 100 min ~ ~  

Figure 9 Calculated craze envelopes at various times. 
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Figure 10 Master curve o f  craze growth rate as a func- 
t ion o f  per cent  strain for polycarbonate  in n-heptane.  
Reference tempera ture  is 294 K. 

: 

T T R 

- AE G + BeTR ) 
= Go exp RTR 

is obtained, which may be rewritten as 

- -  z3'EG TR 1 - -  T -1 . (13) e7 = eTR RB 

Thus, (dG/dt)7,R may be .plotted at any given 
reference temperature, TR, as a function o f  the 
strain, eWR. The master curve may be used at any 
other temperature, T, by recalculating the strain 
to the "equivalent" values, ew, using Equation 12. 
The data reported previously at the five tempera- 
tures used were shifted in this manner to a refer- 
ence temperature of  T =  294 K. The result is 
shown in Fig. 10. 

Go exp (-- AEG/RT + BeT) 

(12) 

6. Application of theory to data of Argon 
and Salama 

Equation 3 for the craze growth rate is quite 
general and should be applicable to other experi- 
mental conditions. Argon and Salama [11] have 
measured craze growth rates of  commercial poly- 
styrene under constant uniaxial tension, in air at 
253 and 293 K. Their data have been correlated 
using Equation 2. Values of  a* = 3.3 MPa, A '  = 
2,76 x 10  -11 and 1.22 x 10 .9 c m m i n  -1 at 253 
and 293 K, respectively, and a value of  AE G = 
54 400 Joules gram mo1-1 (based on two tempera- 
tures), were calculated. The results are summarized 
in Figs 11 and 12. 
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Figure 11 Craze growth rate at various constant stresses. 
Data of Argon and Salama [11] for commercial poly- 
styrene in air at 253 K. 

7. A definit ion for  critical strain based on 
craze growth rate 

The experiments in which the cut edges of  the test 
samples were protected from the solvent, seem to 
indicate that  there exists a value o f  deformation 
below which nucleation of  crazes does not occur, 
at least within the experimental  time-frame of  
days. However, the experiments conducted with 
specimens whose cut sides were exposed to sol- 
vents, seem to indicate that  crazes are present 
even at deformations below the critical values 
reported in the literature. At  very low strains, the 
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Figure 12 Craze growth rates at various constant stresses. 
Data of Argon and Salama [111 for commercial poly- 
styrene in air at 293 K. 

T A B L E I Variation o f  critical strain with  temperature 
for polycarbonate in n-heptane 

e e (%) T (K) 

0.43 300 
0.39 304 
0.34 308 
0.30 313 
0.26 318 

T A B L E I I  Variation of critical strain with temperature 
for polystyrene in air 

cr c (MPa) e c (%) T (K) 

23.1 1.0 253 
11.5 0.5 293 

crazes do not  grow rapidly enough to be measured 
during the time devoted to the experiment,  but  
extrapolat ion o f  the growth-rate equation would, 
nevertheless, indicate a finite growth rate. 

A more conservative definition of  critical 
strain could be based on the growth-rate equation 
by  setting a criterion o f  a maximum allowable 
craze growth rate. We propose the criterion that a 
nucleated craze should grow, for example, no 
more than 1 mm in 10 years at constant strain and 
temperature.  The calculated linear growth rate is 

d(--22-/ = 1.903 x 10 -s cm min -t  . (14) 
\ U t l  e~itical 

With the parameters calculated above for poly- 
carbonate in n-heptane, the values for the critical 
strain, %, given in Table I are obtained. 

These are lower than the value of  0.94 to 1.02 
at room temperature,  reported by  Kambour [2].  

Using an equivalent definition at constant stress, 
the value of  2200 MPa for the modulus of  poly- 
styrene, from the data of  Argon and Salama can 
be obtained the values o f  ee for polystyrene in 
air given in Table II. 

The values reported here are lower than num- 
bers previously reported in the literature because 
they are based on the growth rate of  pre-existing 
crazes emanating from flaws. 
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